BRAIN & SPINAL LESIONS: NOT JUST A SCIENCE

Rimas V. Lukas, MD
Associate Professor
Director of Medical Neuro-Oncology
University of Chicago
OVERVIEW

• Background
• Clinical Presentation
• Clinical Management
 – Surgery
 – Stereotactic radiosurgery
 – Systemic Therapies
BACKGROUND

• VHL gene 3p25-26
• >200 distinct disease-causing mutations
• 1 in 360,000 live births
• Men=Women
• ~40% sporadic hemangioblastomas have VHL gene mutation
• Progressive central nervous system (CNS) hemangioblastomas associated with significant symptoms
CNS MANIFESTATIONS

• Hemangioblastomas
 – Brain
 – Spinal Cord
 – Spinal Nerve Roots

• Endolymphatic Sac Tumors (ELST)
 – Dr. M. Gluth to discuss
HEMANGIOBLASTOMAS

- WHO grade I tumors
- pVHL inhibits breakdown of HIF1α
- Tumors composed of endothelial cells, pericytes, stromal cells
VHL TYPES

<table>
<thead>
<tr>
<th>VHL Disease [50,51]</th>
<th>Genetic Abnormalities</th>
<th>High Risk</th>
<th>Low Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Deletions, nonsense mutations, insertions, truncations, splice acceptor mutations</td>
<td>CNS hemangioblastomas, retinal hemangioblastomas, ccRCC</td>
<td>Pheochromocytomas</td>
</tr>
<tr>
<td>Type 2A</td>
<td>Missense mutations; e.g. Y98H, Y112H, V116F</td>
<td>CNS hemangioblastomas, retinal hemangioblastomas, pheochromocytomas</td>
<td>ccRCC</td>
</tr>
<tr>
<td>Type 2B</td>
<td>Missense mutations, e.g. R167Q, R167W; partial gene deletions, nonsense mutations</td>
<td>Very high risk of ccRCC. Increased risk of CNS hemangioblastomas, retinal hemangioblastomas, pheochromocytomas</td>
<td></td>
</tr>
<tr>
<td>Type 2C</td>
<td>Missense mutations; e.g. V155L, R238W, L188V</td>
<td>Pheochromocytomas only</td>
<td></td>
</tr>
</tbody>
</table>

VHL, Von Hippel-Lindau; CNS, central nervous system; ccRCC, clear cell renal cell cancer.
VHL Types

<table>
<thead>
<tr>
<th>VHL Disease [50,51]</th>
<th>Genetic Abnormalities</th>
<th>High Risk</th>
<th>Low Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Deletions, nonsense mutations, insertions, truncations, splice acceptor mutations</td>
<td>CNS hemangioblastomas, retinal hemangioblastomas, ccRCC</td>
<td>Pheochromocytomas</td>
</tr>
<tr>
<td>Type 2A</td>
<td>Missense mutations; e.g. Y98H, Y112H, V116F</td>
<td>CNS hemangioblastomas, retinal hemangioblastomas, pheochromocytomas</td>
<td>ccRCC</td>
</tr>
<tr>
<td>Type 2B</td>
<td>Missense mutations, e.g. R167Q, R167W; partial gene deletions, nonsense mutations</td>
<td>Very high risk of ccRCC. Increased risk of CNS hemangioblastomas, retinal hemangioblastomas, pheochromocytomas</td>
<td></td>
</tr>
<tr>
<td>Type 2C</td>
<td>Missense mutations; e.g. V155L, R238W, L188V</td>
<td></td>
<td>Pheochromocytomas only</td>
</tr>
</tbody>
</table>

VHL, Von Hippel-Lindau; CNS, central nervous system; ccRCC, clear cell renal cell cancer.
NEUROANATOMIC LOCATION

• Posterior Fossa (Infratentorial)
 – Cerebellum
 • Posterior >Anterior
 – Brainstem
 • Posterior medulla>Elsewhere in brainstem

• Supratentorial
NEUROANATOMIC LOCATION

• SPINAL REGION
 – Spinal Cord
 • Dorsal>Ventral
 – Spinal Nerve Roots
CLINICAL PRESENTATION

• Localizable Symptoms
 – Cerebellum
 – Brainstem
 – Spinal cord
 – Spinal nerve roots

• Non-Localizable Symptoms
 – Increased intracranial pressure (ICP)
CLINICAL PRESENTATION

- Median age of CNS hemangioblastoma diagnosis = 20s-30s
- Age of onset Male = Female
- Most are asymptomatic
- Symptoms due to tumor/cyst size/location
- Saltatory (72%), exponential (22%), linear (6%) growth rates
- Synchronous & Non-Synchronous growth phases
- Spontaneous regression not common
- Non-cystic tumors may develop cysts
CLINICAL PRESENTATION

• 60-90% VHL patients develop multiple CNS hemangioblastomas
• Location of existing lesions does not increase likelihood of lesions in the same region
• ~1/2 patients have hemangioblastomas in at least 2 regions
• Cysts >tumor in size (for example, cerebellar 34:1)
PREGNANCY

• Conflicting reports
• ??Change in rate of growth??
• ??Incidence of serious complications??
• VHLA→MRI at 4 months, routine neurological evaluation, increase if new symptoms
CLINICAL MANAGEMENT

• Symptoms or anticipated progression guide management
• Imaging influences management
• ***No similar size cut-offs as in RCC***
• Management Options
 – Surgery
 – Radiation
 – Systemic Therapies
NEUROSURGICAL RESECTION

• Often curative for specific hemangioblastoma
• Can prolong life and improve quality of life (QOL)
STEREOTACTIC RADIOSURGERY (SRS)

• Optimal targets
 – ***except cyst size***
• Limited prospective data
• Limited long-term follow up
• Better evaluated in non-VHL hemangioblastomas
• Local control at 2,5,10, and 15 yrs=91%, 83%, 61%, and 51%
• Recommended in patients with unfavorable risks associated with resection or in circumstances where multiple hemangioblastomas prevent definitive surgical resection
SYSTEMIC THERAPIES

- “Holy Grail”
- **NOT** recommended in front-line setting
- Clear signals for efficacy have *not* yet been established
- VEGFR TKI
 - sunitinib
 - semaxinib
- VEGF Ab
 - Bevacizumab
 - Ongoing trial NCT01015300 (www.clinicaltrials.gov)
- Thalidomide
- Interferon Alpha
ACKNOWLEDGMENTS
Sarah Nielsen
Ray Grogan
Jane Churpek
Bakhtiar Yamini
Peter Warnke
Maciej Lesniak
David Frim
Edwin Ramos
Ben Roitberg
Ruth Rudinski
Kelly Kramer
Steven Chmura
Peter Pytel
John Collins
Trent Hodgson
Changrui Xiao