Outline

- How does VHL disease manifest in the eye?
- What is the nature and appearance of VHL eye tumors and how do they affect eye health?
- How do eye doctors detect and monitor VHL tumors?
- What treatments exist for VHL eye tumors?
- Some common questions regarding VHL eye tumors
VHL: a multisystemic cancer syndrome

Lonser et al., 2003
Definition of VHL disease in the eye

- Hallmark lesion of ocular VHL disease
 - Retinal capillary hemangioblastoma
- Early Descriptions
 - 1870’s – 1890’s: First descriptions of large “aneurysmal dilatations of retinal vessels”; “associated with exudation”
 - 1904: Described by Eugene von Hippel as “angiomatosis retinae”
 - 1926-27: Association of cerebellar and retinal hemangioblastomas by Arvid Lindau
A Little Eye Anatomy.......

- Structure of the eye and retina
 - The eye as a “camera”
 - Retina = “film” of the eye
A Little Eye Anatomy...

- Structure of the eye and retina
 - The eye as a “camera”
 - Retina = “film” of the eye
A Little Eye Anatomy.......

- Parts of the retina
 - Central vs. Peripheral retina
 - Optic nerve
Retinal capillary hemangioblastoma (RCH)

- Features of ocular VHL lesion
 - Slow growth of lesion within blood vessels of the retina
 - Circumscribed, orange-red lesion, round in shape
 - Supplied by dilated, tortuous feeding and draining retinal vessels
Retinal capillary hemangioblastoma (RCH)

- Distribution
 - Peripheral
 - Juxtapapillary RCHs
 - Located adjacent to the optic nerve
 - Variable size and prominence
 - No obvious feeding and draining vessels
Secondary structural effects of RCHs

- **Exudation**
 - Disruption in retinal structure and function due to:
 - Retinal edema and serous detachment
 - Deposition of intraretinal lipid
Secondary structural effects of RCHs
Secondary structural effects of RCHs

- **Fibrosis**
 - Arises from secondary preretinal glial proliferation
 - Distortion of the retina (macular pucker)
 - Tractional retinal detachment
End-stage effects of RCHs

- Massive exudation and retinal detachment
- Uveitis, glaucoma, phthisis, loss of eye
Unusual variant of ocular VHL – retinal vascular proliferation

- Fine superficial vessels in juxtapapillary position
- Association with epiretinal fibrosis

Wong et al., Arch Ophthalmol, 2008
Diagnostic imaging of RCHs

- Fluorescein angiography
 - To highlight the presence of RCHs
 - To characterize the extent of exudation
Diagnostic imaging of RCHs

- **Optical Coherence Tomography (OCT)**
 - To monitor lesion growth
 - To monitor lesion exudation and response to treatment
Treatments for Ocular VHL Disease

• **Observation**
 - Decision to treat small, non-exudative peripheral lesions
 - Early intervention vs. careful monitoring

• **Ablative Laser photocoagulation**
 - Mainstay of treatment for small peripheral lesions
 - Goal: to induce
 - Growth cessation
 - Decreased exudation
Treatments for Ocular VHL Disease

• Cryotherapy
 o Considered for lesions that are
 ➢ Anterior
 ➢ Larger (>3mm)
 ➢ Associated with extensive fluid

• Radiotherapy
 o Plaque radiotherapy
 o External beam radiotherapy

• Vitrectomy
 o Indications: Fibrosis, retinal detachment, extensive hemorrhage
Juxtapapillary RCHs: A Treatment Dilemma

- **Difficulty in treatment**
 - Difficulty with access (posterior position)
 - Ablative treatments:
 - Damage the optic nerve, nerve-fiber layer, retinal blood supply
 - May induce increased fibrosis, subretinal hemorrhage
Take Home Points

• Ocular VHL consists of the emergence of tumors in blood vessels of the retina
• Leakage from retinal tumors can disrupt the structure of the retina resulting in vision loss
• VHL retinal tumors may be treated by a variety of treatments
• Early detection and treatment can be associated with better vision outcomes
Some common questions on ocular VHL

- How can I tell if I have ocular VHL?
Some common questions on ocular VHL

- How often should a patient with VHL consult their eye doctor?
Some common questions on ocular VHL

- Will everyone with VHL disease develop ocular VHL?

- Prevalence of RCHs in patients with clinical diagnosis of VHL

 - Cross-sectional analysis of 890 patients with diagnosis of VHL disease (872 with characterized mutations in VHL gene)

 - Overall prevalence: 37.6%
Some common questions on ocular VHL

• I have been diagnosed with VHL and am concerned about my vision. Am I likely to go blind?

 • Distribution of visual acuities in better and worse-seeing eye
 • Visual impairment is usually monocular in nature
 • Low prevalence of binocular impairment (1 in 19 or 5.7% of patients have Va <20/160 in both eyes)
Some common questions on ocular VHL

- I have been diagnosed with VHL and am concerned about my vision. Am I likely to go blind?
Clinical trials for new treatment modalities

- **Anti-VEGF treatments**
 - **Systemic** anti-VEGF treatments: limited success in case studies
 - **SU5416** (Aiello et al. 2002, Girmens et al., 2003, Madhusudan, 2004),
 - **Bevacizumab** (von Buelow et al., 2007)
 - **Local** anti-VEGF treatments:
 - **Pegaptanib** (aptamer that inhibits VEGF isoform 165) (Dahr et al., 2007)
 - 5-patient open label trial
 - Intravitreal injections every 6 weeks for >6 injections
 - no vision improvement, minimal anatomical improvement
Clinical trials for new treatment modalities

• Anti-VEGF treatments
 o **Systemic** anti-VEGF treatments: limited success in case studies
 ➢ **SU5416** (Aiello et al. 2002, Girmens et al., 2003, Madhusudan, 2004),
 ➢ **Bevacizumab** (von Buelow et al., 2007)
 o **Local** anti-VEGF treatments:
 o **Pegaptanib** (aptamer that inhibits VEGF isoform 165) (Dahr et al., 2007)
 ➢ 5-patient open label trial
 ➢ Intravitreal injections every 6 weeks for >6 injections
 ➢ no vision improvement, minimal anatomical improvement
Clinical trials for new treatment modalities

• Anti-VEGF treatments
 - **Systemic** anti-VEGF treatments: limited success in case studies
 - **SU5416** (Aiello et al. 2002, Girmens et al., 2003, Madhusudan, 2004),
 - **Bevacizumab** (von Buelow et al., 2007)
 - **Local** anti-VEGF treatments:
 - **Pegaptanib** (aptamer that inhibits VEGF isoform 165) (Dahr et al., 2007)
 - 5-patient open label trial
 - Intravitreal injections every 6 weeks for >6 injections
 - no vision improvement, minimal anatomical improvement
Clinical trials for new treatment modalities

• **Anti-VEGF treatments**

 o **Local anti-VEGF treatments:**

 ➢ *Ranibizumab* (Wong et al., 2008)

 ➢ 5-patient open label trial

 ➢ Intravitreal injections every 4 weeks for 1 year

 ➢ minimal beneficial anatomical or functional improvement

 o **Viable target for intervention?**

 o Delivery of therapeutic dose to RCH: systemic vs. intravitreal approaches

 o Relationship between VEGF signaling and RCH characteristics (growth, exudation, fibrosis)

 o Combination treatment: Inhibition of PDGF signaling

(Wong et al., 2008)
Phenotype of Ocular VHL

- Impact of ocular VHL disease on eye health
 - Cross-sectional analysis of 335 patients with ocular VHL disease
 - Demographics

| Number of patients | • 335 patients from 220 families.
 • 1.5±1.2 patients per family (range 1-13) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>45% male : 55% female</td>
</tr>
</tbody>
</table>
| Age | 36.9±13.7 years
 (range 8.6 – 84.3) |
| Race | 91% white: 4.8%
 Hispanic: 2.4%
 Asian: 1.8%
 Black |

(Wong et al., 2008)
Phenotype of Ocular VHL

- Laterality
 - Unilateral = 42%, Bilateral = 58%
 - Not associated with age or gender
Phenotype of Ocular VHL

- Severely Affected eyes
 - 1 in 5 patients had at least one eye enucleated or structurally disrupted
 - Risk of severe involvement increased with age and bilateral involvement

- All eyes (n=670 of 335 patients)
 - Eyes with RCHs (n=529, 79%)
 - Severe involvement, RCHs cannot be visualized (n=71, 13%)
 - Enucleations (n=42)
 - Structural disruptions (n=29)
 - RCHs can be individually evaluated (n=458, 87%)
 - Eyes without RCH (n=141, 21%)
 - In juxtapapillary location only (n=37, 8.1%)
 - In peripheral location only (n=388, 84.7%)
 - Both juxtapapillary and peripheral locations (n=33, 7.2%)
Phenotype of Ocular VHL

- Ocular phenotype of RCH
 - Majority of RCHs located in peripheral retina

All eyes (n=670 of 335 patients)

- Eyes with RCHs (n=529, 79%)
 - Severe involvement; RCHs cannot be visualized (n=71, 13%)
 - Encleations (n=42)
 - Structural disruptions (n=29)
 - RCHs can be individually evaluated (n=458, 87%)
 - In juxtapapillary location only (n=37, 8.1%)
 - In peripheral location only (n=388, 84.7%)
 - Both juxtapapillary and peripheral locations (n=33, 7.2%)
- Eyes without RCH (n=141, 21%)
 Phenotype of Ocular VHL

- Number of peripheral RCHs
 - Average no. of peripheral RCHs = **2.5 ± 1.8** (range 1 – 11)
 - **25%** extended > 1 quadrant of peripheral retina
 - No association between RCH number and age (p=0.60) or extent of peripheral retinal involvement (p=0.70)
Impact of Ocular VHL on Vision

- Distribution of visual acuities in better and worse-seeing eye
 - Visual impairment is usually **monocular** in nature
 - Low prevalence of binocular impairment (1 in 19 or 5.7% of patients have Va <20/160 in both eyes)
- However, impact of RCH on vision is significant
 - OR in eyes with RCHs (versus eyes without RCHs)
 - Moderate vision loss (< 20/40) = 9.1 (4.1–20.2)
 - Severe vision loss (< 20/160) = 12.8 (4.4–37.7).
Impact of Ocular VHL on Vision

- **Location of tumor**
 - Juxtapapillary tumors associated with worse vision
- **Number of peripheral tumors**
- **Extent of peripheral retina involved**

<table>
<thead>
<tr>
<th>Eyes with RCHs in:</th>
<th>Mean Va ± std dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral RCH only</td>
<td>75.9 letters (≥ 20/32)</td>
</tr>
<tr>
<td>Optic disk RCH only</td>
<td>67.1 letters (≥ 20/50)</td>
</tr>
<tr>
<td>Both Optic disk and periphery RCH</td>
<td>58.8 letters (≥ 20/62)</td>
</tr>
</tbody>
</table>
Genotype-Phenotype Correlation in von Hippel-Lindau Disease With Retinal Angiomatosis

Wai T. Wong, MD, PhD; Elvira Agrón, MS; Hanna R. Coleman, MD; George F. Reed, PhD; Karl Csaky, MD, PhD; James Peterson, PhD; Gladys Glenn, MD, PhD; W. Marston Linehan, MD; Paul Albert, PhD; Emily Y. Chew, MD
Genotype-Phenotype Correlations in Ocular VHL Disease

- Genotype and the prevalence of ocular VHL disease

<table>
<thead>
<tr>
<th>Type of Mutational Class</th>
<th>Prevalence of RCHs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino-acid Substitution</td>
<td>37.8%</td>
</tr>
<tr>
<td>Protein Truncation</td>
<td>40.2%</td>
</tr>
<tr>
<td>Complete Deletion</td>
<td>14.5%*</td>
</tr>
<tr>
<td>Total</td>
<td>37.1%</td>
</tr>
</tbody>
</table>

(n = 839 patients with mutations in VHL gene)

Patients with complete deletions have the lowest rate of RCH ocular involvement
Genotype-Phenotype Correlations in Ocular VHL Disease

- Genotype and the phenotype of ocular VHL disease
Genotype-Phenotype Correlations in Ocular VHL Disease

- Genotype and visual acuity
Genotype-Phenotype Correlations in Ocular VHL Disease

- Genotype-phenotype correlations
 - Genotype category had no impact on:
 - Whether one or both eyes are affected
 - Whether an eye becomes phthisical or enucleated
 - How many tumors form
 - Genotype category influenced:
 - How likely ocular involvement occurs
 - Where tumors were located
 - Visual acuity outcome
- Complete deletion of VHL protein:
 - Lower incidence of ocular disease (1 in 6, compared to 1 in 3)
 - Better visual acuity outcome
Genotype-Phenotype Correlations in Ocular VHL Disease

- Significance of the position of missense mutations (n = 412 patients)
 - Prevalence of ocular VHL disease
 - α-domain vs β-domain: 46% vs 34% ($p = 0.016$)
- Phenotype of ocular VHL disease

<table>
<thead>
<tr>
<th>Ocular Phenotype</th>
<th>Mutations in the α-Domain</th>
<th>Mutations in the β-Domain</th>
<th>OR (95% CI) α-Domain vs. β-Domain</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Participants with RCHs (n = 157)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral RCHs</td>
<td>38/71 (53.5)</td>
<td>55/86 (64.0)</td>
<td>0.71 (0.33–1.50)</td>
<td>0.3661</td>
</tr>
<tr>
<td>Severe structural involvement in at least 1 eye</td>
<td>16/71 (22.5)</td>
<td>14/86 (16.3)</td>
<td>1.71 (0.66–4.40)</td>
<td>0.2673</td>
</tr>
<tr>
<td>Juxtapapillary RCH in at least 1 eye</td>
<td>13/86 (15.1)</td>
<td>26/71 (36.6)</td>
<td>4.56 (1.77–11.76)</td>
<td>0.0017</td>
</tr>
<tr>
<td>Peripheral RCH in at least 1 eye</td>
<td>78/86 (90.7)</td>
<td>55/71 (77.4)</td>
<td>0.24 (0.08–0.71)</td>
<td>0.0104</td>
</tr>
<tr>
<td>All Participants with RCHs in the Peripheral Retina (n = 133)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least 1 eye with \geq3 peripheral RCH</td>
<td>22/55 (40.0)</td>
<td>38/78 (48.7)</td>
<td>0.72 (0.32–1.62)</td>
<td>0.4244</td>
</tr>
<tr>
<td>At least 1 eye with \geq5 peripheral RCH</td>
<td>13/55 (23.6)</td>
<td>17/78 (21.8)</td>
<td>1.28 (0.51–3.21)</td>
<td>0.5959</td>
</tr>
<tr>
<td>>1 Quadrant involved in periphery</td>
<td>22/55 (40.0)</td>
<td>20/78 (25.6)</td>
<td>1.45 (0.62–3.42)</td>
<td>0.3921</td>
</tr>
</tbody>
</table>
Summary

• Clinical characterization of a large population of VHL patients with ocular VHL disease
 ➢ Quantitative characterization of phenotypic features
 ➢ Assessment of visual impact of ocular VHL disease
 ➢ Assessment of natural history of disease
 ➢ Identification of phenotypes that lead to vision loss

• Genotype-phenotype correlations
 ➢ Profile the influence of genotype of VHL mutations on prevalence and functional outcome of ocular disease

• Therapeutic challenges
 ➢ Predictive models for ocular follow-up and treatment
 ➢ New modalities for exudative juxtapapillary lesions
Retinal capillary hemangioblastoma (RCH)

- Optic nerve VHL lesion