PERSONALIZED MEDICINE FOR VHL AND OTHER HEREDITARY RENAL MALIGNANCIES

Dr Howard L. McLeod
Medical Director, DeBartolo Family Personalized Medicine Institute
Chair, Department of Individualized Cancer Management
Senior Member, Population Sciences
State of Florida Endowed Chair

The clinical problem
• Multiple active regimens for the treatment of most cancers
• Variation in response to therapy
• Unpredictable toxicity

With choice comes decision

Lot’s of options for kidney cancer

immunotherapy
IL-2
Kinase inhibitors
Antivascular agents
chemotherapy

Probabalistic data is enough
Many clinical interventions are based on increased probability of a problem occurring

- Insulin/oral diabetes drugs
- Statins
- Antihypertensives
Why focus on drugs?

- Adverse drug events are 5th leading cause of death in USA
 - Adverse drug events are heavily litigated
 - Many adverse drug events are predictable

- Cancer chemotherapy is expensive

- Opportunities to improve ‘value’
Pharmacogenomic examples - 2017

- bcr/abl or 9:22 translocation — imatinib mesylate*
- HER2-neu — trastuzumab**
- C-kit mutations — imatinib mesylate**
- Epidermal growth factor receptor mutations — gefitinib
- BRAF — vemurafenib
- ALK — Crizotinib
- TPMT — mercaptopurine and azathioprine*
- UGT1A1 — irinotecan**
- CYP2C9/VKORC1 — warfarin*
- HLA-B*5701 — abacavir*
- HLA-B*1502 — carbamazepine*
- IL28B — interferon
- CFTR — ivacaftor
- CYP2C19 — clopidogrel, voriconazole
- CYP2D6 — 5-HT3 receptor antagonists, antidepressants, ADHD drugs, and codeine derivatives*

Pain control
Antiemetics
Antidepressants
ADHD drugs
Anticoagulants
Not just tumor markers!!

Cancer Care is changing fast: the opportunity and the threat

Practical choices
- Selection from amongst ‘equals’
- Clinical trial options, beyond non-specific or anatomical
- ‘acceptable’* levels of toxicity
- *to the patient, not prescriber
Recent example
55 yo female, Stage IV clear cell renal cancer spread to the lungs
Previous therapy in addition to surgical excision includes:
*Gemcitabine/Sunitinib x 4 months then
*Everolimus x 3 months then
*Pazopanib x 3 months but is no longer working
No clear next steps and patient is fit and wants to keep trying

<table>
<thead>
<tr>
<th>Gene</th>
<th>Location</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>11q22-q23</td>
<td>F763L</td>
</tr>
<tr>
<td>EP300</td>
<td>22q13.2</td>
<td>A1268S</td>
</tr>
<tr>
<td>FGFR4</td>
<td>5q35.2</td>
<td>L747M</td>
</tr>
<tr>
<td>MLL</td>
<td>A53V</td>
<td></td>
</tr>
<tr>
<td>PBRM1</td>
<td>3p21</td>
<td>R1027*</td>
</tr>
<tr>
<td>PRDM1</td>
<td>6q21</td>
<td>V243G</td>
</tr>
<tr>
<td>VHL</td>
<td>3p25.3</td>
<td>Q132*</td>
</tr>
</tbody>
</table>

Patient enrolled on PARP inhibitor clinical trial with stable disease since August 2016
Options that had not been previously visible
VHL Mediated Target Activation

- Endothelial cell proliferation & survival
- Autocrine stimulation of KDR
- Suppression of anti-tumor immune response
- Autocrine stimulation of mTOR
- Stimulation of mTOR
- EGFR
- Stimulation of EGFR
- TGF-α
- Endothelial cell proliferation & Metastasis
- Suppression of anti-tumor immune response
- Pericyte proliferation & survival
- MMPs
- Breakdown of ECM
- Angiogenesis
- CXCR4
- Stimulation of CXCR4
- RGP-1
- Angiogenesis

Opiate Pharmacogenomics

- Codeine
- Morphine
- Hydrocodone
- Hydromorphone
- Fentanyl
- Tropisetron

5-HT3 Receptor Antagonists

<table>
<thead>
<tr>
<th>Primary pathway</th>
<th>Secondary pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodolasetron (active metabolite of dolasetron)</td>
<td>CYP2D6</td>
</tr>
<tr>
<td>Granisetron</td>
<td>CYP3A</td>
</tr>
<tr>
<td>Ondansetron</td>
<td>CYP3A4</td>
</tr>
<tr>
<td>Palonosetron</td>
<td>CYP2D6</td>
</tr>
<tr>
<td>Tropisetron</td>
<td>CYP2D6</td>
</tr>
<tr>
<td>CYP3A4</td>
<td></td>
</tr>
</tbody>
</table>

Ho K and Tong JG. Current Opinion in Anaesthesiology 2006, 19:606–611

Clinical Risk Panel: easier to test all than some

- Clinical pathway-driven care
- Adhere to cancer risk guidelines
- Identify underlying predisposition to severe toxicity
- Mitigating risk of untoward drug effects
- Enriching for probability of benefit

Growing number of 'actionable' genes

A Broader Strategy

- Neuropathy risk
- Cardiotoxicity risk
- Bone marrow 'opathy' risk
- Gastropathy risk
- Hereditary cancer risk
- Eligibility for PARP inhibitors
- Criteria for immunotherapy
- Drug selection and dosing
 - Pain control
 - Antiemetics
 - Antifungals
 - Anesthesia risks
 - Coagulation risks

Cancer Pharmacogenomics and Tumor and Germline Genomes.

- Some 'other' genomes

Practical choices

- Selection treatment from amongst 'equals'
- Clinical trial options, beyond non-specific or anatomical
- Longitudinal monitoring for futility/next options
- 'acceptable'* levels of toxicity
 - We have to ask!
 - *to the patient, not prescriber
- Preemptive assessment of benefit:risk, to AVOID risk and ASSURE the best change of benefit