Identifying Novel Therapeutics for VHL Disease Downstream of a Unique VHL-AURKA-HDAC6 Signaling Axis

Ruhee Dere, Ph.D.
Assistant Professor
Baylor College of Medicine
4th October, 2018
13th International VHL Medical Symposium

VHL and the Primary Cilium

- VHL stabilizes microtubules of the mitotic spindle and the cilium
- VHL localizes to the primary cilium
- Loss of VHL results in loss of primary cilia
- VHL-deficient tumor tissue was reported to have a decreased frequency of ciliation as compared to the adjacent parenchymal tissue

VHL and the Primary Cilium

- VHL stabilizes microtubules of the mitotic spindle and the cilium
- VHL localizes to the primary cilium
- Loss of VHL results in loss of primary cilia
- VHL-deficient tumor tissue was reported to have a decreased frequency of ciliation as compared to the adjacent parenchymal tissue

AURKA — Non-Mitotic Role in Cilia Disassembly

- AURKA stabilizes microtubules of the mitotic spindle and the cilium
- AURKA localizes to the primary cilium
- Loss of AURKA results in loss of primary cilia
- AURKA-deficient tumor tissue was reported to have a decreased frequency of ciliation as compared to the adjacent parenchymal tissue

AURKA — Non-Mitotic Role in Cilia Disassembly

- AURKA stabilizes microtubules of the mitotic spindle and the cilium
- AURKA localizes to the primary cilium
- Loss of AURKA results in loss of primary cilia
- AURKA-deficient tumor tissue was reported to have a decreased frequency of ciliation as compared to the adjacent parenchymal tissue

VHL Directly Ubiquitinates AURKA

- In Vitro Ubiquitination Assay
- In Vivo Ubiquitination Assay

VHL Directly Ubiquitinates AURKA

- In Vitro Ubiquitination Assay
- In Vivo Ubiquitination Assay
VHL Regulates AURKA Protein Half-Life

VHL Mediates AURKA Ubiquitination Independent of Prolyl Hydroxilation

VHL Promotes AURKA Degradation to Regulate Ciliogenesis

Ongoing Efforts:
1. What is the signal on AURKA that is recognized by VHL?
2. Is there a genotype-phenotype correlation between pathogenic VHL mutants and their ability to regulate AURKA?

Primary Image Based High Throughput Screening (HTS) Assay

Chowdhury P. et al., under revision
Bexarotene as a Positive Regulator of the Primary Cilium

Chowdhury P. et al., under revision

Bexarotene is a FDA approved synthetic retinoid that binds and activates retinoid X receptors (RXRs).

Bexarotene as A Positive Regulator of the Primary Cilium in hTERT RPE-1 Cells

Chowdhury P. et al., under revision

Bexarotene Rescues Cilia By Regulating AURKA Expression

Chowdhury P. et al., under revision
SUMMARY

1. Developed a highly robust and reproducible HTS assay using a dual labelling strategy to identify small molecules that rescue the cilia defect in the setting of VHL-deficiency

2. Identified bexarotene, a synthetic retinoid as a bona fide positive regulator of the cillum

3. Bexarotene modulates the cillum via its regulation of AURKA expression

4. Bexarotene is efficacious in decreasing AURKA activity in a tumor xenograft model of RCC

ACKNOWLEDGEMENTS

Baylor College of Medicine
Pratim Chowdhury, M.S.
Menuka Karki, Ph.D.
Durgi Nand Tripathi, Ph.D.
Tiq Berry, B.S.
Cheryl L. Walker, Ph.D.
Mike Mancini, Ph.D.

Vanderbilt University
W. Kimryn Rathmell, M.D., Ph.D.

Texas A&M Health Science Center, IBT
Peter Davies, M.D.
Clifford Stephan, Ph.D.
Red Powell, Ph.D.
Yong Song Park, Ph.D.

University of Debrecen, Hungary
Ivan Uray, M.D., Ph.D.

Funding

VHL Alliance
Gilson Longenbaugh Foundation